第十四章 不能太惯着他(1 / 2)
('&div id="cener_ip">&b>&/b>这个头发有点自然卷、相貌还挺帅气的男学生,却和刚才的综合大题一样,只看了一遍题目,便开始写解题步骤,似乎根本不用思考,当然,更可能的是在看完题目的一瞬间就有了解题思路。
不过区区两分钟,他已完成了第一道附加题,继续写起了第二题的答案。
徐世朝完全石化了,心中除了“卧槽”外完全想不到别的感叹词。
这个男生到底是何方神圣?这已不能称之为“学霸”,要称“学神”了吧?高二有这么强的数学学神吗?
徐世朝自问对于学校里的数学尖子生都算是认识的,去年的奥数初赛他也帮着带队、担起生活保障的职责,可这男生分明就没参加过上一年度的奥数初赛啊!
正当徐世朝目瞪口呆之时,忽然感觉有人拍了拍自己的肩膀,他回头一看,原来是前辈老郑来了。
老郑做了个噤声的动作,然后和他一起站在男生的后面,看着男生答题。
男生已在看第三道连徐世朝都没信心做出来的难题了。
“求证数列an=3n s(naros1/3)(n=1,2…)的每一项都是整数,但都不是3的倍数。”
男学生这回终于停了两秒钟,然后就在两个老师的注视下,写下了“证明方法一”。
徐世朝当场倒抽了口凉气,这家伙,难道就在刚才的两秒思考时间里,想到了两种证明方法?
“证明方法一设θ=aros1/3,则sθ=1/3,且an=3n snθ,
(1)当n=1,2时,a1=3sθ=1,a2=32 s2θ=9(2s2θ-1)=9(-7/9)=-7
1和-7都是整数且不是3的倍数,命题可证。
(2)假设a(k-1),ak都是整数,且都不是3的倍数,由三角公式可得(注k-1为下标)
a(k+1)=3(k+1)s(k+1)θ=3(k+1)[2sθskθ-s(k-1)θ]=2ak-9a(k-1)
……
由数学归纳法可知,命题对于一切正整数成立。”
“证明方法二设θ=aros1/3,则sθ=1/3,sθ=22(1/2)/3,
引入复数z=3(sθ+isθ)=1+22(1/2)i
则an是复数zn=[1+22(1/2)i]n的实部……”
看着男学生轻轻松松写完了两种证明方法,然后翻了翻卷子,几乎以一目十行的速度检查完毕,便叠好试卷放到角落里,用空白的草稿纸盖着,然后他便打着呵欠开始睡觉了。
好家伙,这学生的草稿纸居然是空白的!
徐世朝从小到大,参加过数学考试无数次了,也从没试过有草稿纸空白的时候!
徐世朝不由偷偷地掀起草稿纸,看了眼试卷上的姓名班级一栏。
秦克,高二三班。
没什么印象啊……高二的数学尖子生中有这号人物?
徐世朝正苦苦回忆着,老郑忽然朝旁边靠窗的学生做了个动作,示意那学生拉下窗帘。
↑返回顶部↑